¢

Section 2.2
UNIX Standardizati,.

AIO
BAR
CPT
cs
CX
FSC
1P6
MF
ML
MLR
MON
MPR

TRC
TRI
TRL
TSA
TSF
TSH
TSP
TSS
TYM
XSI
XSR

Symbolic constant

_POSIX_ADVISORY INFO
_POSIX_ASYNCHRONOUS Io
_POSIX_BARRIERS
_POSIX_CPUTIME
_POSIX_CLOCK SELECTION

_POSIX_FSYNC
_POSIX_IPVs
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK

POSIX MEMLOCK RANGE
_POSIX_MONOTONIC_ CLOCK
_POSIX_MEMORY_PROTECTION
__POSIX_MESSAGE_PASSING

_POSIX_PRIORITIZED IO
_POSIX PRIORITIZED SCHEDULING
_POSIX_RAW_SOCKETS
_POSIX_REALTIME SIGNALS
_POSIX SEMAPHORES

_POSIX SHARED_MEMORY OBJECTS
_POSIX SYNCHRONIZED IO
_POSIX_SPIN LOCKS
_POSIX_SPAWN

_POSIX_SPORADIC_ SERVER
_POSIX_THREAD CPUTIME
_POSIX_TRACE_EVENT FILTER
_POSIX_THREADS
_POSIX_TIMEOUTS

_POSIX TIMERS
_POSIX_THREAD_PRIO_INHERIT
_POSIX THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY SCHEDULING
_POSIX TRACE
_POSIX_TRACE_INHERIT
_POSIX_TRACE_LOG
_POSIX_THREAD_ATTR STACKADDR
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD PROCESS_SHARED
_POSIX_THREAD_SPORADIC_ SERVER
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_TYPED_MEMORY OBJECTS
_XOPEN_UNIX

_XOPEN_STREAMS

Description

advisory information (real-time)
asynchronous input and output (real-time)
barriers (real-time)

process CPU time clocks (real-time)
clock selection (real-time)

extension to ISO C standard

file synchronization

IPv6 interfaces

memory-mapped files

process memory locking (real-time)
memory range locking (real-time)
monotonic clock (real-time)

memory protection

message passing (real-time)

IEC 60559 floating-point option
prioritized input and output

process scheduling (real-time)

raw sockets

real-time signals extension
semaphores (real-time)

shared memory objects (real-time)
synchronized input and output (real-time)
spin locks (real-time)

spawn (real-time)

process sporadic server (real-time)
thread CPU time clocks (real-time)
trace event filter

threads

timeouts (real-time)

timers (real-time)

thread priority inheritance (real-time)
thread priority protection (real-time)
thread execution scheduling (real-time)
trace

trace inherit

trace log

thread stack address attribute
thread-safe functions

thread process-shared synchronization
thread sporadic server (real-time)
thread stack address size

typed memory objects (real-time)
X/Open extended interfaces

XSI STREAMS

Figure 2.5 POSIX.1 optional interface groups and codes

Some of the additional interfaces defined in the XSI are required, whereas others are

optional. The interfaces are divided into

as follows:

option groups based on common functionality,

32

UNIX Standardization and Implementations Chapter 2

* Encryption: denoted by the _XOPEN_CRYPT symbolic constant
o Real-time: denoted by the XOPEN_REALTIME symbolic constant
* Advanced real-time

e Real-time threads: denoted by the _XOPEN REALTIME THREADS symbolic
constant

¢ Advanced real-time threads

e Tracing

e XSISTREAMS: denoted by the _XOPEN_STREAMS symbolic constant
* Legacy: denoted by the XOPEN_LEGACY symbolic constant

The Single UNIX Specification (SUS) is a publication of The Open Group, which
was formed in 1996 as a merger of X/Open and the Open Software Foundation (OSF),
both industry consortia. X/Open used to publish the X/Open Portability Guide, which
adopted specific standards and filled in the gaps where functionality was missing. The
goal of these guides was to improve application portability past what was possible by
merely conforming to published standards.

The first version of the Single UNIX Specification was published by X/Open in
1994. It was also known as “Spec 1170,” because it contained roughly 1,170 interfaces.
It grew out of the Common Open Software Environment (COSE) initiative, whose goal
was to further improve application portability across all implementations of the UNIX
operating system. The COSE group—Sun, IBM, HF, Novell/USL, and OSF—went
further than endorsing standards. In addition, they investigated interfaces used by
common commercial applications. The resulting 1,170 interfaces were selected from
these applications, and also included the X/Open Common Application Environment
(CAE), Issue 4 (known as “XPG4” as a historical reference to its predecessor, the
X/Open Portability Guide), the System V Interface Definition (SVID), Edition 3, Level 1
interfaces, and the OSF Application Environment Specification (AES) Full Use
interfaces.

The second version of the Single UNIX Specification was published by The Open
Group in 1997. The new version added support for threads, real-time interfaces, 64-bit
processing, large files, and enhanced multibyte character processing.

The third version of the Single UNIX Specification (SUSv3, for short) was published
by The Open Group in 2001. The Base Specifications of SUSv3 are the same as the IEEE
Standard 1003.1-2001 and are divided into four sections: Base Definitions, System
Interfaces, Shell and Utilities, and Rationale. SUSv3 also includes X/Open Curses Issue
4, Version 2, but this specification is not part of POSIX.1.

In 2002, ISO approved this version as International Standard ISO/IEC 9945:2002.
The Open Group updated the 1003.1 standard again in 2003 to include technical
corrections, and ISO approved this as International Standard ISO/IEC 9945:2003. In
April 2004, The Open Group published the Single UNIX Specification, Version 3, 2004
Edition. It included more technical corrections edited in with the main text of the
standard.

Section 2.3 UNIX System Implementations 33

2.3

2.2.4 FIPS

FIPS stands for Federal Information Processing Standard. It was published by the U.S.
government, which used it for the procurement of computer systems. FIPS 151-1
(April 1989) was based on the IEEE Std. 1003.1-1988 and a draft of the ANSI C
standard. This was followed by FIPS 151-2 (May 1993), which was based on the IEEE
Standard 1003.1-1990. FIPS 151-2 required some features that POSIX.1 listed as
optional. All these options have been included as mandatory in POSIX.1-2001.

The effect of the POSIX.1 FIPS was to require any vendor that wished to sell
POSIX.1-compliant computer systems to the U.S. government to support some of the
optional features of POSIX.1. The POSIX.1 FIPS has since been withdrawn, so we won't
consider it further in this text.

UNIX System Implementations

The previous section described 1SO C, IEEE POSIX, and the Single UNIX Specification;
three standards created by independent organizations. Standards, however, are
interface specifications. How do these standards relate to the real world? These
standards are taken by vendors and turned into actual implementations. In this book,
we are interested in both these standards and their implementation.

Section 1.1 of McKusick et al. [1996] gives a detailed history (and a nice picture) of
the UNIX System family tree. Everything starts from the Sixth Edition (1976) and
Seventh Edition (1979) of the UNIX Time-Sharing System on the PDP-11 (usually called
Version 6 and Version 7). These were the first releases widely distributed outside of Bell
Laboratories. Three branches of the tree evolved.

1. One at AT&T that led to System III and System V, the so-called commercial
versions of the UNIX System.

2. One at the University of California at Berkeley that led to the 4.xBSD
implementations.

3. The research version of the UNIX System, developed at the Computing Science
Research Center of AT&T Bell Laboratories, that led to the UNIX Time-Sharing
System 8th Edition, 9th Edition, and ended with the 10th Edition in 1990.

2.3.1 UNIX System V Release 4

UNIX System V Release 4 (SVR4) was a product of AT&T’s UNIX System Laboratories
(USL, formerly AT&T’s UNIX Software Operation). SVR4 merged functionality from
AT&T UNIX System V Release 3.2 (SVR3.2), the SunOS operating system from Sun
Microsystems, the 4.3BSD release from the University of California, and the Xenix
system from Microsoft into one coherent operating system. (Xenix was originally

34 UNIX Standardization and Implementations Chapter 2

developed from Version 7, with many features later taken from System V.) The SVR4
source code was released in late 1989, with the first end-user copies becoming available
during 1990. SVR4 conformed to both the POSIX 1003.1 standard and the X/ Open
Portability Guide, Issue 3 (XPG3).

AT&T also published the System V Interface Definition (SVID) [AT&T 1989].
Issue 3 of the SVID specified the functionality that an operating system must offer to
qualify as a conforming implementation of UNIX System V Release 4. As with POSIX.1,
the SVID specified an interface, not an implementation. No distinction was made in the
SVID between system calls and library functions. The reference manual for an actual
implementation of SVR4 must be consulted to see this distinction [AT&T 1990e].

2.3.2 4.4BSD

The Berkeley Software Distribution (BSD) releases were produced and distributed by
the Computer Systems Research Group (CSRG) at the University of California at
Berkeley; 4.2BSD was released in 1983 and 4.3BSD in 1986. Both of these releases ran on
the VAX minicomputer. The next release, 4.3BSD Tahoe in 1988, also ran on a particular
minicomputer called the Tahoe. (The book by Leffler et al. [1989] describes the 4.3BSD
Tahoe release.) This was followed in 1990 with the 4.3BSD Reno release; 4.3BSD Reno
supported many of the POSIX.1 features.

The original BSD systems contained proprietary AT&T source code and were
covered by AT&T licenses. To obtain the source code to the BSD system you had to
have a UNIX source license from AT&T. This changed as more and more of the AT&T
source code was replaced over the years with non-AT&T source code and as many of
the new features added to the Berkeley system were derived from non-AT&T sources.

In 1989, Berkeley identified much of the non-AT&T source code in the 4.3BSD Tahoe
release and made it publicly available as the BSD Networking Software, Release 1.0.
This was followed in 1991 with Release 2.0 of the BSD Networking Software, which was
derived from the 4.3BSD Reno release. The intent was that most, if not all, of the 4.4BSD
system would be free of any AT&T license restrictions, thus making the source code
available to all.

4.4BSD-Lite was intended to be the final release from the CSRG. Its introduction
was delayed, however, because of legal battles with USL. Once the legal differences
were resolved, 4.4BSD-Lite was released in 1994, fully unencumbered, so no UNIX
source license was needed to receive it. The CSRG followed this with a bug-fix release
in 1995. This release, 44BSD-Lite, release 2, was the final version of BSD from the
CSRG. (This version of BSD is described in the book by McKusick et al. [1996].)

The UNIX system development done at Berkeley started with PDP-11s, then moved
to the VAX minicomputer, and then to other so-called workstations. During the early
1990s, support was provided to Berkeley for the popular 80386-based personal
computers, leading to what is called 386BSD. This was done by Bill Jolitz and was
documented in a series of monthly articles in Dr. Dobb’s Journal throughout 1991. Much
of this code appears in the BSD Networking Software, Release 2.0.

Section 2.3 UNIX System Implementations 35

2.3.3 FreeBSD

FreeBSD is based on the 4.4BSD-Lite operating system. The FreeBSD project was
formed to carry on the BSD line after the Computing Science Research Group at the
University of California at Berkeley decided to end its work on the BSD versions of the
UNIX operating system, and the 386BSD project seemed to be neglected for too long,

All software produced by the FreeBSD project is freely available in both binary and
source forms. The FreeBSD 5.2.1 operating system was one of the four used to test the
examples in this book. '

Several other BSD-based free operating systems are available. The NetBSD project
(http://www.netbsd.org) is similar to the FreeBSD project, with an emphasis on portability
between hardware platforms. The OpenBSD project (http:// www . openbsd. org) is similar
to FreeBSD but with an emphasis on security.

2.3.4 Linux

Linux is an operating system that provides a rich UNIX programming environment,
and is freely available under the GNU Public License. The popularity of Linux is
somewhat of a phenomenon in the computer industry. Linux is distinguished by often
being the first operating system to support new hardware.

Linux was created in 1991 by Linus Torvalds as a replacement for MINIX. A
grass-roots effort then sprang up, whereby many developers across the world
volunteered their time to use and enhance it.

The Mandrake 9.2 distribution of Linux was one of the operating systems used to
test the examples in this book. That distribution uses the 2.4.22 version of the Linux
operating system kernel.

235 Mac OS X

Mac OS X is based on entirely different technology than prior versions. The core
operating system is called “Darwin,” and is based on a combination of the Mach kernel
(Accetta et al. [1986]) and the FreeBSD operating system. Darwin is managed as an
open source project, similar to FreeBSD and Linux.

Mac OS X version 10.3 (Darwin 7.4.0) was used as one of the operating systems to
test the examples in this book.

2.3.6 Solaris

Solaris is the version of the UNIX System developed by Sun Microsystems. It is based
on System V Release 4, with more than ten years of enhancements from the engineers at
Sun Microsystems. It is the only commercially successful SVR4 descendant, and is
formally certified to be a UNIX system. (For more information on UNIX certification,
see http://www.opengroup .org/certification/idx/unix.html.)

The Solaris 9 UNIX system was one of the operating systems used to test the
examples in this book.

36

UNIX Standardization and Implementations Chapter 2

24

2.5

2.3.7 Other UNIX Systems

Other versions of the UNIX system that have been certified in the past include

* AIX, IBM’s version of the UNIX System

* HP-UX, Hewlett-Packard’s version of the UNIX System

* IRIX, the UNIX System version shipped by Silicon Graphics

* UnixWare, the UNIX System descended from SVR4 and currently sold by SCO

Relationship of Standards and Implementations

The standards that we’ve mentioned define a subset of any actual system. The focus of
this book is on four real systems: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris
9. Although only Solaris can call itself a UNIX system, all four provide a UNIX
programming environment. Because all four are POSIX compliant to varying degrees,
we will also concentrate on the features that are required by the POSIX.1 standard,
noting any differences between POSIX and the actual implementations of these four
systems. Those features and routines that are specific to only a particular
implementation are clearly marked. As SUSv3 is a superset of POSIX.1, we'll also note
any features that are part of SUSv3 but not part of POSIX.1.

Be aware that the implementations provide backward compatibility for features in
earlier releases, such as SVR3.2 and 4.3BSD. For example, Solaris supports both the
POSIX.1 specification for nonblocking 1/O (0_NONBLOCK) and the traditional System V
method (O_NDELAY). In this text, we'll use only the POSIX.1 feature, although we’ll
mention the nonstandard feature that it replaces. Similarly, both SVR3.2 and 4.3BSD
provided reliable signals in a way that differs from the POSIX.1 standard. In Chapter 10
we describe only the POSIX.1 signal mechanism.

Limits

The implementations define many magic numbers and constants. Many of these have
been hard coded into programs or were determined using ad hoc techniques. With the
various standardization efforts that we’ve described, more portable methods are now
provided to determine these magic numbers and implementation-defined limits, greatly
aiding the portability of our software.

Two types of limits are needed:

1. Compile-time limits (e.g., what's the largest value of a short integer?)
2. Runtime limits (e.g., how many characters in a filename?)
Compile-time limits can be defined in headers that any program can include at compile

time. But runtime limits require the process to call a function to obtain the value of the
limit.

Section 2.5

Limits 37

Additionally, some limits can be fixed on a given implementation—and could
therefore be defined statically in a header—yet vary on another implementation and
would require a runtime function call. An example of this type of limit is the maximum
number of characters in a filename. Before SVR4, System V historically allowed only 14
characters in a filename, whereas BSD-derived systems increased this number to 255.
Most UNIX System implementations these days support multiple file system types, and
each type has its own limit. This is the case of a runtime limit that depends on where in
the file system the file in question is located. A filename in the root file system, for
example, could have a 14-character limit, whereas a filename in another file system
could have a 255-character limit.

To solve these problems, three types of limits are provided:

Compile-time limits (headers)

2. Runtime limits that are not associated with a fite or directory (the sysconf
function)

3. Runtime limits that are associated with a file or a directory (the pathconf and
fpathconf functions)

To further confuse things, if a particular runtime limit does not vary on a given system,
it can be defined statically in a header. If it is not defined in a header, however, the
application must call one of the three conf functions (which we describe shortly) to

determine its value at runtime.

Name Description acclevl:[:t]::l\e u\l:lue Typical value
CHAR_BIT bits in a char 8 8
CHAR_MAX max value of char (see later) 127
CHAR_MIN min value of char (see later) -128
SCHAR_MAX max value of signed char 127 127
SCHAR_MIN min value of signed char -127 -128
UCHAR_MAX max value of unsigned char 255 255
INT_MAX max value of int 32,767 2,147,483,647
INT_MIN min value of int -32,767 —2,147,483,648
UINT_MAX max value of unsigned int 65,535 4,294,967,295
SHRT _MIN min value of short -32,767 -32,768
SHRT_MAX max value of short 32,767 32,767
USHRT_MAX max value of unsigned short 65,535 65,535
LONG_MAX max value of long 2,147,483,647 2,147 483,647
LONG_MIN min value of long -2,147,483,647 -2,147,483,648
ULONG_MAX max value of unsigned long 4,294,967,295 4,294,967,295
LLONG_MAX max value of long long 9,223,372,036,854,775,807 9,223,372,036,854,775,807
LLONG_MIN min value of long long -9,223,372,036,854,775,807 | -9,223,372,036,854,775,808
ULLONG_MAX | max value of unsigned 18,446,744,073,709,551,615 | 18,446,744,073,709,551,615

long long
MB_LEN_MAX | max number of bytes ina 1 16
multibyte character constant

Figure 2.6 Sizes of integral values from <limits.h>

38 UNIX Standardization and Implementations Chapter 2

2.5.1 ISO C Limits

All the limits defined by ISO C are compile-time limits. Figure 2.6 shows the limits from
the C standard that are defined in the file <1imits.h>. These constants are always
defined in the header and don’t change in a given system. The third column shows the
minimum acceptable values from the ISO C standard. This allows for a system with
16-bit integers using one’s-complement arithmetic. The fourth column shows the
values from a Linux system with 32-bit integers using two’s-complement arithmetic.
Note that none of the unsigned data types has a minimum value, as this value must be 0
for an unsigned data type. On a 64-bit system, the values for long integer maximums
match the maximum values for 1ong long integers.

One difference that we will encounter is whether a system provides signed or
unsigned character values. From the fourth column in Figure 2.6, we see that this
particular system uses signed characters. We see that CHAR_MIN equals SCHAR MIN
and that CHAR_MAX equals SCHAR_MAX. If the system uses unsigned characters, we
would have CHAR_MIN equal to 0 and CHAR_MAX equal to UCHAR MAX.

The floating-point data types in the header <float.h> have a similar set of
definitions. Anyone doing serious floating-point work should examine this file.

Another ISO C constant that we’ll encounter is FOPEN_MAX, the minimum number
of standard I/O streams that the implementation guarantees can be open at once. This
value is in the <stdio.h> header, and its minimum value is 8. The POSIX.1 value
STREAM MAX, if defined, must have the same value as’ FOPEN MAX.

ISO C also defines the constant TMP_MAX in <stdio.h>. It is the maximum
number of unique filenames generated by the tmpnam function. We'll have more to say
about this constant in Section 5.13.

In Figure 2.7, we show the values of FOPEN_MAX and TMP_MAX on the four
platforms we discuss in this book.

ISO C also defines the constant FILENAME_MAX, but we avoid using it, because some
operating system implementations historically have defined it to be too small to be of use.

FreeBSD Linux MacOS X | Solaris
521 24.22 103 9

FOPEN MAX 20 16 20 20
TMP_MAX (308915776 238,328(308915776| 17,576

Limit

Figure 2.7 1SO limits on various platforms

2.5.2 POSIX Limits

POSIX.1 defines numerous constants that deal with implementation limits of the
operating system. Unfortunately, this is one of the more confusing aspects of POSIX.1.
Although POSIX.1 defines numerous limits and constants, we’ll only concern ourselves
with the ones that affect the base POSIX.1 interfaces. These limits and constants are
divided into the following five categories:

Section 2.5

Limits 39

Invariant minimum values: the 19 constants in Figure 2.8
Invariant value: SSIZE_MAX

Runtime increasable values: CHARCLASS NAME MAX, COLL_WEIGHTS_MAX,
LINE_MAX, NGROUPS_MAX, and RE_DUP_MAX

Runtime invariant values, possibly indeterminate: ARG MAX, CHILD_MAX,
HOST NAME_MAX, LOGIN_NAME MAX, OPEN_MAX, PAGESIZE, RE_DUP_MAX,
STREAM MAX, SYMLOOP_MAX, TTY_NAME_MAX, and TZNAME_MAX

Pathname variable values, possibly indeterminate: FILESIZEBITS, LINK_MAX,
MAX CANON, MAX_ INPUT, NAME_ MAX, PATH_MAX, PIPE_BUF, and
SYMLINK MAX

Of these 44 limits and constants, some may be defined in <1imits.h>, and others may
or may not be defined, depending on certain conditions. We describe the limits and
constants that may or may not be defined in Section 2.5.4, when we describe the
sysconf, pathconf, and fpathconf functions. The 19 invariant minimum values
are shown in Figure 2.8.

Name Description: minimum acceptable value for Value
_POSIX_ARG_MAX length of arguments to exec functions 4,096
_POSIX_CHILD_MAX number of child processes per real user ID 25
_POSIX_HOST_NAME_MAX maximum length of a host name as returned by gethostname 255
_POSIX_LINK_MAX number of links to a file 8
_POSIX_LOGIN_NAME_MAX | maximum length of a login name 9
_POSIX_MAX_CANON number of bytes on a terminal’s canonical input queue 255
_POSIX_MAX INPUT space available on a terminal’s input queue 255
_POSIX_NAME_MAX number of bytes in a filename, not including the terminating null 14
_POSIX_NGROUPS_MAX number of simultaneous supplementary group IDs per process 8
_POSIX_OPEN_MAX number of open files per process 20
_POSIX_PATH_MAX number of bytes in a pathname, including the terminating nuil 256
_POSIX_PIPE_BUF number of bytes that can be written atomically to a pipe 512
_POSIX_RE_DUP_MAX number of repeated occurrences of a basic regular expression 255

permitted by the regexec and regcomp functions when

using the interval notation \ {m, n\ }
_POSIX_SSIZE_MAX value that can be stored in ssize_t object 32,767
_POSIX_STREAM_MAX number of standard /O streams a process can have open at once 8
_POSIX_SYMLINK MAX number of bytes in a symbolic link 255
_POSIX_SYMLOOP_MAX number of symbolic links that can be traversed during pathname 8

resolution
_POSIX_TTY_NAME MAX length of a terminal device name, including the terminating null 9
_POSIX_TZNAME_MAX number of bytes for the name of a time zone 6

Figure 2.8 POSIX.1 invariant minimum values from <limits.h>

These values are invariant; they do not change from one system to another. They

specify the most restrictive values for these features. A conforming POSIX.1
implementation must provide values that are at least this large. This is why they are
called minimums, although their names all contain MAX. Also, to ensure portability, a

40 UNIX 5tandardization and Implementations Chapter 2

strictly-conforming application must not require a larger value. We describe what each
of these constants refers to as we proceed through the text.

A strictly-conforming POSIX application is different from an application that is merely POSIX
conforming. A POSIX-conforming application uses only interfaces defined in IEEE Standard
1003.1-2001. A strictly-conforming application is a POSIX-conforming application that does
not rely on any undefined behavior, does not use any obsolescent interfaces, and does not
require values of constants larger than the minimums shown in Figure 2.8.

Unfortunately, some of these invariant minimum values are too small to be of
practical use. For example, most UNIX systems today provide far more than 20 open
files per process. Also, the minimum limit of 255 for _POSIX_PATH MAX is too small.
Pathnames can exceed this limit. This means that we can’t use the two constants
_POSIX_OPEN_MAX and POSIX PATH_MAX as array sizes at compile time.

Each of the 19 invariant minimum values in Figure 2.8 has an associated
implementation value whose name is formed by removing the _POSIX _prefix from the
name in Figure 2.8. The names without the leading POSIX were intended to be the
actual values that a given implementation supports. (These 19 implementation values
are items 2-5 from our list earlier in this section: the invariant value, the runtime
increasable value, the runtime invariant values, and the pathname variable values.) The
problem is that not all of the 19 implementation values are guaranteed to be defined in
the <limits.h> header.

For example, a particular value may not be included in the header if its actual value
for a given process depends on the amount of memory on the system. If the values are
not defined in the header, we can’t use them as array bounds at compile time. So,
POSIX.1 decided to provide three runtime functions for us to call—sysconf,
pathconf, and fpathconf—to determine the actual implementation value at
runtime. There is still a problem, however, because some of the values are defined by
POSIX.1 as being possibly “indeterminate” (logically infinite). This means that the
value has no practical upper bound. On Linux, for example, the number of iovec
structures you can use with readv or writev is limited only by the amount of memory
on the system. Thus, IOV_MAX is considered indeterminate on Linux. We'll return to
this problem of indeterminate runtime limits in Section 2.5.5.

2.5.3 XSI Limits
The XS also defines constants that deal with implementation limits. They include:

Invariant minimum values: the ten constants in Figure 2.9
Numerical limits: LONG_BIT and WORD BIT

Runtime invariant values, possibly indeterminate: ATEXIT MAX, IOV_MAX, and
PAGE_SIZE

The invariant minimum values are listed in Figure 2.9. Many of these values deal with
message catalogs. The last two illustrate the situation in which the POSIX.1 minimums
were too small—presumably to allow for embedded POSIX.1 implementations—so the

Section 2.5 Limits = 41

Single UNIX Specification added symbols with larger minimum values for XSI-
conforming systems.

h—]

- Minimum .
Name Description acceptable value Typical value

NL_ARGMAX maximum value of digit in calls to printf 9 9
and scanf

NL_LANGMAX maximum number of bytes in LANG 14 14
environment variable

NL_MSGMAX maximum message number 32,767 32,767

NL_NMAX maximum number of bytes in N-to-1 (none specified) K} 1
mapping characters ‘

NL_SETMAX maximum set number 255 255

NL_TEXTMAX maximum number of bytes in a message _POSIX2_LINE_MAX 2,048
string

NZERO default process priority 20 20

_XOPEN_IOV_MAX |maximum number of iovec structures that 16 16
can be used with readv or writev

_XOPEN_NAME_MAX |number of bytes ina filename 255 255

_XOPEN_PATH_MAX|number of bytes in a pathname 1,024 1,024

Figure 2.9 XSl invariant minimum values from <limits.h>

2.5.4 sysconf, pathconf, and fpathconf Functions

We've listed various minimum values that an implementation must support, but how
do we find out the limits that a particular system actually supports? As we mentioned
earlier, some of these limits might be available at compile time; others must be
determined at runtime. We've also mentioned that some don’t change in a given
system, whereas others can change because they are associated with a file or directory.
The runtime limits are obtained by calling one of the following three functions.

#include <unistd.h>
long sysconf (int name) ;
long pathconf (const char *pathname, int name) ;

long fpathconf (int filedes, int name) ;

All three return: corresponding value if OK, —1 on error (see later)

The difference between the last two functions is that one takes a pathname as its
argument and the other takes a file descriptor argument.

Figure 2.10 lists the name arguments that sysconf uses to identify system limits.
Constants beginning with _SC_ are used as arguments to sysconf to identify the
runtime limit. Figure 2.11 lists the name arguments that are used by pathconf and
fpathconf to identify system limits. Constants beginning with _PC_ are used as
arguments to pathconf and fpathconf to identify the runtime limit.

42 - UNIX Standardization and Implementations

Chapter 2

Name of limit

Description

name argument

ARG_MAX
ATEXIT MAX
CHILD_MAX

clock ticks/second
COLL_WEIGHTS_MAX
HOST_NAME_MAX
IOV_MAX

LINE_MAX

LOGIN_NAME_MAX
NGROUPS_MAX

OPEN_MAX
PAGESIZE
PAGE_SIZE
RE_DUP_MAX

STREAM_MAX

SYMLOOP_MAX
TTY_NAME_MAX

TZNAME_MAX

maximum length, in bytes, of arguments to the
exec functions

maximum number of functions that can be
registered with the atexit function

maximum number of processes per real user ID

number of clock ticks per second

maximum number of weights that can be assigned
to an entry of the LC_COLLATE order
keyword in the locale definition file

maximum length of a host name as returned by
gethostname

maximum number of iovec structures that can be
used with readv or writev

maximum length of a utility’s input line

maximum length of a login name

maximum number of simultaneous
supplementary process group IDs per
process

maximum number of open files per process

system memory page size, in bytes

system memory page size, in bytes

number of repeated occurrences of a basic regular
expression permitted by the regexec and
regcomp functions when using the interval
notation \ {m, n\ }

maximum number of standard I/O streams per
process at any given time; if defined, it must
have the same value as FOPEN_MAX

number of symbolic links that can be traversed
during pathname resolution

length of a terminal device name, including the
terminating null

maximum number of bytes for the name of a time
zone

_SC_ARG_MAX
_SC_ATEXIT MAX
_SC_CHILD MAX
_SC_CLK_TCK
_SC_COLL_WEIGHTS MAX
_SC_HOST_NAME_MAX
_SC_IOV_MAX
_SC_LINE_MAX

_SC_LOGIN_NAME MAX
_SC_NGROUPS_MAX

_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PAGE_SIZE
_SC_RE_DUP_MAX

_SC_STREAM_ MAX

_SC_SYMLOOP_MAX
_SC_TTY_NAME_MAX

_SC_TZNAME_MAX

Figure 2.10 Limits and name arguments to sysconf

We need to look in more detail at the different return values from these three
functions.

1. All three functions return -1 and set errno to EINVAL if the name isn’t one of
the appropriate constants. The third column in Figures 2.10 and 2.11 lists the
limit constants we’ll deal with throughout the rest of this book.

2. Some names can return either the value of the variable (a return value > 0) or an
indication that the value is indeterminate. An indeterminate value is indicated
by returning -1 and not changing the value of errno.

3. The value returned for _SC_CLK_TCK is the number of clock ticks per second,

for use with the return values from the t imes function (Section 8.16).

Section 2.5 Limits 43
Name of limit Description name argument

FILESIZEBITS |minimum number of bits needed to represent,asa |_PC_FILESIZEBITS
signed integer value, the maximum size of a
regular file allowed in the specified directory

LINK_ MAX maximum value of a file’s link count _PC_LINK_MAX

MAX CANON maximum number of bytes on a terminal’s canonical | _PC_MAX _CANON
input queue

MAX_INPUT number of bytes for which space is available on _PC_MAX_INPUT
terminal’s input queue

NAME MAX maximum number of bytes in a filename (does not | _PC_NAME MAX
include a null at end)

PATH MAX maximum number of bytes in a relative pathname, |_PC_PATH MAX
including the terminating null

PIPE_BUF maximum number of bytes that can be written _PC_PIPE_BUF
atomically to a pipe

SYMLINK MAX |number of bytes in a symbolic link _PC_SYMLINK_MAX

Figure 2.11 Limits and name arguments to pathconf and fpathconf

There are some restrictions for the pathname argument to pathconf and the filedes

argument to fpathconf. If any of these restrictions isn’t met, the results are
undefined.

The referenced file for _PC_MAX CANON and _PC_MAX INPUT must be a
terminal file.

The referenced file for PC_LINK_MAX can be either a file or a directory. If the
referenced file is a directory, the return value applies to the directory itself, not
to the filename entries within the directory.

The referenced file for PC_FILESIZEBITS and _PC_NAME_MAX must be a
directory. The return value applies to filenames within the directory.

The referenced file for PC_PATH_MAX must be a directory. The value returned
is the maximum length of a relative pathname when the specified directory is
the working directory. (Unfortunately, this isn’t the real maximum length of an
absolute pathname, which is what we want to know. We'll return to this
problem in Section 2.5.5.)

The referenced file for PC_PIPE_BUF must be a pipe, FIFO, or directory. In the
first two cases (pipe or FIFO) the return value is the limit for the referenced pipe
or FIFO. For the other case (a directory) the return value is the limit for any
FIFO created in that directory.

The referenced file for PC_SYMLINK_MAX must be a directory. The value
returned is the maximum length of the string that a symbolic link in that
directory can contain.

44 UNIX Standardization and Implementations Chapter 2

Example

The awk(1) program shown in Figure 2.12 builds a C program that prints the value of
each pathconf and sysconf symbol.

BEGIN
prin
prin
prin
prin
prin
prin
prin
prin
prin
prin
prin
prin
FS="
whil

}

clos
whil

}

clos
exit
}

END {

{

tf ("#include \"apue.h\"\n")

tf("#include <errno.hs>\n")

tf("#include <limits.h>\n")

tf("\n")

tf("static void pr_sysconf (char *, int);\n")

tf("static void pr_pathconf (char *, char *, int);\n")
tf("\n")

tf("int\n")

tf("main(int argc, char *argv[])\n")

tf("{\n")

tf ("\tif (argc != 2)\n")

tf("\t\terr_quit(\"usage: a.out <dirname>\");\n\n")
\t+"

e (getline <"sysconf.sym" > 0) {

printf ("#ifdef %s\n", $1)

printf ("\tprintf(\"%s defined to be %%d\\n\", %s+0);\n", $1, $1)
printf ("#else\n")

printf ("\tprintf (\"no symbol for %s\\n\");\n", $1)
printf ("#endif\n")

printf ("#ifdef %s\n", $2)

printf ("\tpr_sysconf (\"%s =\", %s);\n", $1, $2)
printf ("#else\n")

printf ("\tprintf (\"no symbol for %s\\n\");\n", $2)
printf ("#endif\n")

e ("sysconf.sym")

e (getline <"pathconf.sym" > 0) ({

printf ("#ifdef %s\n", $1)

printf ("\tprintf (\"$s defined to be %%d\\n\", %s+0);\n", $1, $1)
printf ("#else\n")

printf ("\tprintf (\"no symbol for %s\\n\");\n", $1)

printf ("#endif\n")

printf ("#ifdef %s\n", $2)

printf("\tpr_pathconf (\"$s =\", argv[l], %s);\n", $1, $2)
printf ("#else\n")

printf ("\tprintf (\"no symbol for %s\\n\");\n", $2)

printf ("#endif\n")

e ("pathconf.sym")

printf ("\texit (0) ;\n")
printf ("}\n\n")
printf ("static void\n")

Section 2.5 Limits 45

printf ("pr_sysconf (char *mesg, int name)\n")

printf ("{\n")

printf ("\tlong wval;\n\n")

printf ("\tfputs (mesg, stdout);\n")

printf ("\terrno = 0;\n")

printf ("\tif ((val = sysconf (name)) < 0) {\n")

printf ("\t\tif (errno != 0) {\n")

printf ("\t\t\tif (errno == EINVAL)\n")

printf ("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")
printf ("\t\t\telse\n")

printf ("\t\t\t\terr sys(\"sysconf error\");\n")

printf ("\t\t} else {\n")

printf ("\t\t\tfputs(\" (no limit)\\n\", stdout);\n")
printf ("\t\t}\n")

printf ("\t} else {\n")

printf ("\t\tprintf (\" %%1d\\n\", val);\n")

printf ("\t}\n")

printf ("}\n\n")

printf ("static void\n")

printf ("pr_pathconf (char *mesg, char *path, int name)\n")
printf ("{\n")

printf ("\tlong val;\n")

printf ("\n")

printf ("\tfputs (mesg, stdout);\n")

printf ("\terrno = 0;\n")

printf ("\tif ((val = pathconf (path, name)) < 0) {\n")
printf ("\t\tif (errno != 0) {\n")

printf ("\t\t\tif (errno == EINVAL)\n")

printf ("\t\t\t\tfputs(\" (not supported)\\n\", stdout) ; \n")
printf ("\t\t\telse\n")

printf ("\t\t\t\terr sys(\"pathconf error, path = %%s\", path);\n")
printf ("\t\t} else {\n")

printf ("\t\t\tfputs(\" (no limit)\\n\", stdout);\n")
printf ("\t\t}\n")

printf ("\t} else {\n")

printf ("\t\tprintf (\" $%1d\\n\", val);\n")

printf ("\t}\n")

printf ("}\n")

Figure 2.12 Build C program to print all supported configuration limits

The awk program reads two input files—pathconf . sym and sysconf . sym—that
contain lists of the limit name and symbol, separated by tabs. All symbols are not
defined on every platform, so the awk program surrounds each call to pathconf and
sysconf with the necessary #ifdef statements.

For example, the awk program transforms a line in the input file that looks like

NAME_MAX _PC_NAME_MAX
into thefollowing C code:

46

UNIX Standardization and Implementations Chapter 2

#ifdef NAME MAX
printf ("NAME MAX is defined to be $d\n", NAME MAX+0) ;

#else
printf ("no symbol for NAME MAX\n") ;
#endif
#ifdef PC NAME MAX
pr_pathconf ("NAME_MAX =", argv(l], _PC_NAME MAX) ;
#else
printf ("no symbol for PC NAME MAX\n");
#endif

The program in Figure 2.13, generated by the awk program, prints all these limits,

handling the case in which a limit is not defined.

#include "apue.h"
#include <errno.h>
#include <limits.h>

static void pr_sysconf (char *, int);
static void pr_pathconf (char *, char *, int),
int
main(int argc, char *argv[])
{
if (argc != 2)
err_quit("usage: a.out <dirname>");

#ifdef ARG MAX
printf ("ARG MAX defined to be %d\n", ARG_MAX+0);

#else
printf ("no symbol for ARG_MAX\n");
#endif
#ifdef SC ARG MAX
pr_sysconf ("ARG_MAX =", _SC ARG_MAX) ;
#else
printf ("no symbol for _SC_ARG_MAX\n");
#endif
/* similar processing for all the rest of the sysconf symbols... */

#ifdef MAX_ CANON
' printf ("MAX CANON defined to be %d\n", MAX_ CANON+0) ;
#else
printf ("no symbol for MAX CANON\n");

#endif
#ifdef PC MAX_CANON
pr_pathconf ("MAX CANON =", argv[1l], _PC_MAX CANON) ;
#else
printf ("no symbol for _PC_MAX CANON\n");
#endif
/* similar processing for all the rest of the pathconf symbols... */

exit (0);

Section 2.5

Limits

47

static void
pr_sysconf (char *mesg, int name)

{

}

long val;

fputs (mesg, stdout);
errno = 0;
if ((val = sysconf (name)) < 0) {
if (errno != 0) {
if (errno == EINVAL)
fputs (" (not supported)\n", stdout);
else
err sys("sysconf error");
} else {
fputs(" (no limit)\n", stdout);
}

} else {
printf (" %$ld\n", val);
!

static void
pr_pathconf (char *mesg, char *path, int name)

{

long val;

fputs (mesg, stdout);

errno = 0;
if ((val = pathconf (path, name)) < 0) {
if (errno != 0) {
if (errno == EINVAL)
fputs (" (not supported)\n", stdout);
else
err_sys("pathconf error, path = %s", path);
} else {
fputs (" (no limit)\n", stdout);
}
} else {

printf (" %$1d\n", val);

}

Figure 2.14 summarizes results from Figure 2.13 for the four systems we discuss in this

Figure 2.13 Print all possible sysconf and pathconf values

book. The entry “no symbol” means that the system doesn’t provide a corresponding

_SC or _PC symbol to query the value of the constant. Thus, the limit is undefined in

this case. In contrast, the entry “unsupported” means that the symbol is defined by the

system but unrecognized by the sysconf or pathconf functions. The entry “no limit”

means that the system defines no limit for the constant, but this doesn’t mean that the
limit is infinite.

48 UNIX Standardization and Implementations Chapter 2
Solaris 9
Limit FreeBSD Linux Mac OS X UFS PCES
521 2422 103 . .
file system | file system
ARG_MAX 65,536 131,072 262,144 1,048,320 1,048,320
ATEXIT MAX 3212,147,483,647| no symbol no limit no limit
CHARCLASS_NAME_MAX| no symbol 2,048| no symbol 14 14
CHILD_MAX 867 999 100 7,877 7,877
clock ticks/second 128 100 100 100 100
COLL_WEIGHTS_MAX 0 255 2 10 10
FILESIZEBITS unsupported 64 no symbol 41 |unsupported
HOST_NAME_MAX 255|unsupported| nosymbol| nosymbol| nosymbol
IOV_MAX 1,024 no limit| no symbol 16 16
LINE_MAX 2,048 2,048 2,048 2,048 2,048
LINK_MAX 32,767 32,000 32,767 32,767 1
LOGIN_NAME_ MAX 17 256/ no symbol 9 9
MAX_CANON 255 255 255 256 256
MAX INPUT 255 255 255 512 512
NAME_MAX 255 255 765 255 8
NGROUPS_MAX 16 32 16 16 16
OPEN_MAX 1,735 1,024 256 256 256
PAGESIZE 4,096 4,096 4,096 8,192 8,192
PAGE_SIZE 4,096 4,096| no symbol 8,192 8,192
PATH_MAX 1,024 4,096 1,024 1,024 1,024
PIPE_BUF 512 4,096 512 5120 5,120
RE_DUP_MAX 255 32,767 255 255 255
STREAM_MAX 1,735 16 20 256 256
SYMLINK_MAX unsupported no limit| nosymbol| nosymbol| nosymbol
SYMLOOP_MAX 32 no limit| nosymbol| nosymbol|{ nosymbol
TTY_NAME_MAX 255 32| nosymbol 128 128
TZNAME_MAX 255 6 255 no limit no limit

Figure 2.14 Examples of configuration limits

- We'll see in Section 4.14 that UFS is the SVR4 implementation of the Berkeley fast
file system. PCFS is the MS-DOS FAT file system implementation for Solaris. 0

2.5.5 Indeterminate Runtime Limits

We mentioned that some of the limits can be indeterminate. The problem we encounter
is that if these limits aren’t defined in the <limits.h> header, we can’t use them at
compile time. But they might not be defined at runtime if their value is indeterminate!
Let’s look at two specific cases: allocating storage for a pathname and determining the
number of file descriptors.

Pathnames

Many programs need to allocate storage for a pathname. Typically, the storage has been
allocated at compile time, and various magic numbers—few of which are the correct
value—have been used by different programs as the array size: 256, 512, 1024, or the

Section 2.5 Limits 49

standard 1/O constant BUFSIZ. The 4.3BSD constant MAXPATHLEN in the header
<sys/param.h> is the correct value, but many 4.3BSD applications didn’t use it.

POSIX.1 tries to help with the PATH_MAX value, but if this value is indeterminate,
we're still out of luck. Figure 2.15 shows a function that we'll use throughout this text
to allocate storage dynamically for a pathname. '

If the constant PATH_MAX is defined in <limits.h>, then we're all set. If it’s not,
we need to call pathconf. The value returned by pathconf is the maximum size of a
relative pathname when the first argument is the working directory, so we specify the
root as the first argument and add 1 to the result. If pathconf indicates that
PATH_MAX is indeterminate, we have to punt and just guess a value.

Standards prior to SUSv3 were unclear as to whether or not PATH_MAX included a
null byte at the end of the pathname. If the operating system implementation conforms
to one of these prior versions, we need to add 1 to the amount of memory we allocate
for a pathname, just to be on the safe side.

The correct way to handle the case of an indeterminate result depends on how the
allocated space is being used. If we were allocating space for a call to getcwd, for
example—to return the absolute pathname of the current working directory; see
Section 4.22—and if the allocated space is too small, an error is returned and errno is
set to ERANGE. We could then increase the allocated space by calling realloc (see
Section 7.8 and Exercise 4.16) and try again. We could keep doing this until the call to
getcwd succeeded.

#include "apue.h"
#include <errno.h>
#include <limits.h>

#ifdef PATH_MAX

static int pathmax = PATH_MAX;
#else

static int pathmax
#endif

0;

]

#define SUSV3 200112L
static long posix_version = 0;

/* If PATH MAX is indeterminate, no guarantee this is adequate */
#define PATH_MAX_GUESS 1024

char *

path alloc(int *sizep) /* also return allocated size, if nonnull */
char *ptr;
int size;

if (posix_version == 0)
posix_version = sysconf (_SC_VERSION) ;

if (pathmax == 0) { /* first time through */
errno = 0;

50

UNIX Standardization and Implementations Chapter 2

if ((pathmax = pathconf("/", PC PATH MAX)) < 0) {
if (errno == 0)
pathmax = PATH_MAX GUESS; /* it’s indeterminate */
else
err sys{"pathconf error for _PC_PATH MAX");
} else {
pathmax++; /* add one since it‘s relative to root */

}

}

if (posix_version < SUSV3)
size = pathmax + 1;

else
size = pathmax;

if ((ptr = malloc(size)) == NULL)
err sys("malloc error for pathname");

if (sizep != NULL)
*sizep = size;
return (ptr) ;

Figure 2.15 Dynamically allocate space for a pathname

Maximum Number of Open Files

A common sequence of code in a daemon process—a process that runs in the
background, not connected to a terminal—is one that closes all open files. Some
programs have the following code sequence, assuming the constant NOFILE was
defined in the <sys/param. h> header:

#include <sys/param.h>

for (i = 0; i < NOFILE; i++)
close(i);
Other programs use the constant _NFILE that some versions of <stdio.h> provide as
the upper limit. Some hard code the upper limit as 20.

We would hope to use the POSIX.1 value OPEN MAX to determine this value
portably, but if the value is indeterminate, we still have a problem. If we wrote the
following and if OPEN_MAX was indeterminate, the loop would never execute, since
sysconf would return —1:

#include <unistd.h>

for (i = 0; i < sysconf(SC OPEN MAX); i++)
close(i);
Our best option in this case is just to close all descriptors up to some arbitrary limit, say
256. As with our pathname example, this is not guaranteed to work for all cases, but it’s
the best we can do. We show this technique in Figure 2.16.

Section 2.5 Limits 51

#include "apue.h"
#include <errno.h>
#include <limits.h>

#ifdef OPEN_MAX

static long openmax = OPEN_MAX;
#else

static long openmax = 0;

#endif

/*

* If OPEN_MAX is indeterminate, we’'re not
* guaranteed that this is adequate.
*/

#define OPEN MAX GUESS 256

long
open_max (void)
{
if (openmax == 0) { /* first time through */

errno = 0;
if ((openmax = sysconf(_SC_OPEN_MAX)) < 0) {
if (errno == 0)
openmax = OPEN_MAX GUESS; /* it’s indeterminate */
else
err_sys ("sysconf error for _SC_OPEN_MAX") ;

}

return (openmax) ;

Figure 2.16 Determine the number of file descriptors

We might be tempted to call close until we get an error return, but the error return
from close (EBADF) doesn't distinguish between an invalid descriptor and a descriptor
that wasn’t open. If we tried this technique and descriptor 9 was not open but
descriptor 10 was, we would stop on 9 and never close 10. The dup function
(Section 3.12) does return a specific error when OPEN_MAX is exceeded, but duplicating
a descriptor a couple of hundred times is an extreme way to determine this value.

Some implementations will return LONG_MAX for limits values that are effectively
unlimited. Such is the case with the Linux limit for ATEXIT_MAX (see Figure 2.14). This
isn’t a good idea, because it can cause programs to behave badly.

For example, we can use the ulimit command built into the Bourne-again shell to
change the maximum number of files our processes can have open at one time. This
generally requires special (superuser) privileges if the limit is to be effectively
unlimited. But once set to infinite, sysconf will report LONG_MAX as the limit for

52

UNIX Standardization and Implementations Chapter 2

2.6

OPEN_MAX. A program that relies on this value as the upper bound of file descriptors to
close as shown in Figure 2.16 will waste a lot of time trying to close 2,147,483,647 file
descriptors, most of which aren’t even in use.

Systems that support the XSI extensions in the Single UNIX Specification will
provide the getrlimit(2) function (Section 7.11). It can be used to return the
maximum number of descriptors that a process can have open. With it, we can detect
that there is no configured upper bound to the number of open files our processes can
open, so we can avoid this problem.

The OPEN_MAX value is called runtime invariant by POSIX, meaning that its value should not
change during the lifetime of a process. But on systems that support the XSI extensions, we
can call the setrlimit(2) function (Section 7.11) to change this value for a running process.
(This value can also be changed from the C shell with the 1imit command, and from the
Bourne, Bourne-again, and Korn shells with the ulimit command.) If our system supports
this functionality, we could change the function in Figure 2.16 to call sysconf every time it is
called, not only the first time.

Options

We saw the list of POSIX.1 options in Figure 2.5 and discussed XSI option groups in
Section 2.2.3. If we are to write portable applications that depend on any of these
optionally-supported features, we need a portable way to determine whether an
implementation supports a given option.

Just as with limits (Section 2.5), the Single UNIX Specification defines three ways to
do this.

1. Compile-time options are defined in <unistd.h>.

2. Runtime options that are not associated with a file or a directory are identified
with the sysconf function.

3. Runtime options that are associated with a file or a directory are discovered by
calling either the pathconf or the fpathconf function.

The options include the symbols listed in the third column of Figure 2.5, as well as
the symbols listed in Figures 2.17 and 2.18. If the symbolic constant is not defined, we
must use sysconf, pathconf, or fpathconf to determine whether the option is
supported. In this case, the name argument to the function is formed by replacing the
_POSIX at the beginning of the symbol with _SC or _PC. For constants that begin with
_XOPEN, the name argument is formed by prepending the string with _SC or _PC. For
example, if the constant _ POSIX_THREADS is undefined, we can call sysconf with the
name argument set to _SC_THREADS to determine whether the platform supports the
POSIX threads option. If the constant XOPEN UNIX is undefined, we can call
sysconf with the name argument set to _SC_XOPEN UNIX to determine whether the
platform supports the XSI extensions.

Section 2.6

Options

53

If the symbolic constant is defined by the platform, we have three possibilities.

1. If the symbolic constant is defined to have the value -1, then the corresponding
option is unsupported by the platform.

2. If the symbolic constant is defined to be greater than zero, then the
corresponding option is supported.

3. If the symbolic constant is defined to be equal to zero, then we must call
sysconf, pathconf, or fpathconf to determine whether the option is

supported.

Figure 2.17 summarizes the options and their symbolic constants that can be used
with sysconf, in addition to those listed in Figure 2.5.

Name of option

Description

name argument

_POSIX_JOB_CONTROL
_POSIX_READER_WRITER_LOCKS

_POSIX_SAVED_IDS

_POSIX SHELL

_POSIX VERSION

_XOPEN_CRYPT

_XOPEN_LEGACY

_XOPEN_REALTIME

_XOPEN_REALTIME_THREADS

_XOPEN_VERSION

indicates whether the implementation
supports job control

indicates whether the implementation
supports reader-writer locks

indicates whether the implementation
supports the saved set-user-ID
and the saved set-group-ID

indicates whether the implementation
supports the POSIX shell

indicates the POSIX.1 version

indicates whether the implementation
supports the XSI encryption
option group

indicates whether the implementation
supports the XSI legacy option
group

indicates whether the implementation
supports the XSI real-time option
group

indicates whether the implementation
supports the XSI real-time
threads option group

indicates the XSI version

_SC_JOB_CONTROL
_SC_READER_WRITER_LOCKS

_SC_SAVED_IDS

_SC_SHELL

_SC_VERSION

_SC_XOPEN_CRYPT

_SC_XOPEN_LEGACY

_SC_XOPEN_REALTIME

_SC_XOPEN_REALTIME_THREADS

_SC_XOPEN_VERSION

|

Figure 2.17 Options and name arguments to sysconf

The symbolic constants used with pathconf and fpathconf are summarized in
Figure 2.18. As with the system limits, there are several points to note regarding how
options are treated by sysconf, pathcont, and fpathconf.

1. The value returned for _SC_VERSION indicates the four-digit year and
two-digit month of the standard. This value can be 198808L, 199009L, 199506L,
or some other value for a later version of the standard. The value associated
with Version 3 of the Single UNIX Specification is 200112L.

54 UNIX Standardization and Implementations Chapter 2

Name of option Description name argument
_POSIX_CHOWN_RESTRICTEDindicates whether use of chown is restricted | PC_CHOWN RESTRICTED
_POSIX_NO_TRUNC indicates whether pathnames longer than _PC_NO_TRUNC
NAME _MAX generate an error

_POSIX VDISABLE if defined, terminal special characters canbe | PC_VDISABLE
disabled with this value

_POSIX_ASYNC IO indicates whether asynchronous I/O canbe | _PC_ASYNC_IO
used with the associated file

_POSIX_PRIOC_IO indicates whether prioritized I/O can be used | PC_PRIO_ IO
with the associated file

_POSIX_SYNC IO indicates whether synchronized 1/0O can be _PC_SYNC_IO
used with the associated file

Figure 2.18 Options and name arguments to pathconf and fpathconf

2. The value returned for _SC_XOPEN_VERSION indicates the version of the XSI
that the system complies with. The value associated with Version 3 of the Single
UNIX Specification is 600.

3. The values _SC_JOB_CONTROL, _SC_SAVED_IDS, and _PC_VDISABLE no
longer represent optional features. As of Version 3 of the Single UNIX
Specification, these features are now required, although these symbols are
retained for backward compatibility.

4. _PC_CHOWN_RESTRICTED and _PC_NO_TRUNC return -1 without changing
errno if the feature is not supported for the specified pathname or filedes.

5. The referenced file for _PC_CHOWN RESTRICTED must be either a file or a
directory. If it is a directory, the return value indicates whether this option
applies to files within that directory.

6. The referenced file for _PC_NO_TRUNC must be a directory. The return value
applies to filenames within the directory.

7. The referenced file for PC_VDISABLE must be a terminal file.

In Figure 2.19 we show several configuration options and their corresponding
values on the four sample systems we discuss in this text. Note that several of the
systems haven’t yet caught up to the latest version of the Single UNIX Specification.
For example, Mac OS X 10.3 supports POSIX threads but defines _POSIX_ THREADS as

#define _POSIX_ THREADS

without specifying a value. To conform to Version 3 of the Single UNIX Specification,
the symbol, if defined, should be set to -1, 0, or 200112.

An entry is marked as “undefined” if the feature is not defined, i.e., the system
doesn’t define the symbolic constant or its corresponding _PC or _SC name. In contrast,
the “defined” entry means that the symbolic constant is defined, but no value is
specified, as in the preceding POSIX THREADS example. An entry is “unsupported”
if the system defines the symbolic constant, but it has a value of ~1, or it has a value of 0
but the corresponding sysconf or pathconf call returned —1.

Section 2.7

2.7

Srinivas Institute of Technology

Feature Test Macros 55

srssseaasnia 0 ™

0
Ca" No-:u-nuuoaumiiuuuuam

Solaris 9
Limit FreeBSD Linux Mac OS X
521 2422 T PCFS
tile system | file system

_POS IX CHOWN_RESTRICTED 1 1 1 1 1

_POSIX_JOB_CONTROL 1 1 1 1 11

_POSTX_NO_TRUNC 1 1 1 1| unsupported |

_POSIX_SAVED_IDS unsupported 1{unsupported 1 1

_POSTX_THREADS 200112 200112 defined 1 1

_POSIX_VDISABLE 255 0 255 0 0

_POSIX_VERSION 200112 200112 198808 199506 199506 |

_XOPEN_UNIX unsupported 1| undefined 1 1l
| _XOPEN_VERSION unsupported 500| undefined 3 L

Figure 2.19 Examples of configuration options

Note that pathconf returns a value of —1 for _PC_NO_TRUNC when used with a
file from a PCFS file system on Solaris. The PCFS file system supports the DOS format
(for floppy disks), and DOS filenames are silently truncated to the 8.3 format limit that
the DOS file system requires.

Feature Test Macros

The headers define numerous POSIX.1 and XSI symbols, as we've described. But most.
implementations can add their own definitions to these headers, in addition to the
POSIX.1 and XSI definitions. If we want to compile a program so that it depends only
on the POSIX definitions and doesn’t use any implementation-defined limits, we need
to define the constant POSIX_C_SOURCE. All the POSIX.1 headers use this constant to
exclude any implementation-defined definitions when POSIX_C_SOURCE is defined.

Previous versions of the POSIX.1 standard defined the _POSIX SOURCE constant. This has
been superseded by the POSIX_C_SOURCE constant in the 2001 version of POSIX.1.

The constants POSIX C_SOURCE and _XOPEN_SOURCE are called feature test
macros. All feature test macros begin with an underscore. When used, they are typically
defined in the cc command, as in

cc -D_POSIX_C_SOURCE=200112 file.c

This causes the feature test macro to be defined before any header files are included by
the C program. If we want to use only the POSIX.1 definitions, we can also set the first
line of a source file to

#define POSIX_C_SOURCE 200112

To make the functionality of Version 3 of the Single UNIX Specification available to
applications, we need to define the constant XOPEN_SOURCE to be 600. This has the
same effect as defining _POSIX_C_SOURCE to be 200112L as far as POSIX.1
functionality is concerned.

56

UNIX Standardization and Implementations Chapter 2

2.8

2.9

The Single UNIX Specification defines the c99 utility as the interface to the C
compilation environment. With it we can compile a file as follows:

c99 -D_XOPEN_SOURCE=600 file.c -o file

To enable the 1999 ISO C extensions in the gcc C compiler, we use the -std=c99
option, as in

gcc -D_XOPEN_SOURCE=600 -std=c99 file.c -o file

Another feature test macro is __STDC__, which is automatically defined by the C
compiler if the compiler conforms to the ISO C standard. This allows us to write C
programs that compile under both ISO C compilers and non-ISO C compilers. For
example, to take advantage of the ISO C prototype feature, if supported, a header could
contain

#ifdef __STDC _

void *myfunc(const char *, int) ;
#else

void *myfunc();

#endif

Although most C compilers these days support the ISO C standard, this use of the
_ _STDC_ _ feature test macro can still be found in many header files.

Primitive System Data Types

Historically, certain C data types have been associated with certain UNIX system
variables. For example, the major and minor device numbers have historically been
stored in a 16-bit short integer, with 8 bits for the major device number and 8 bits for the
minor device number. But many larger systems need more than 256 values for these
device numbers, so a different technique is needed. (Indeed, Solaris uses 32 bits for the
device number: 14 bits for the major and 18 bits for the minor.)

The header <sys/types.h> defines some implementation-dependent data types,
called the primitive system data types. More of these data types are defined in other
headers also. These data types are defined in the headers with the C typedef facility.
Most end in _t. Figure 2.20 lists many of the primitive system data types that we'll
encounter in this text.

By defining these data types this way, we do not build into our programs
implementation details that can change from one system to another. We describe what
each of these data types is used for when we encounter them later in the text.

Conflicts Between Standards

All in all, these various standards fit together nicely. Our main concern is any
differences between the ISO C standard and POSIX.1, since SUSV3 is a superset of
POSIX.1. There are some differences.

Section 2.9 Conflicts Between Standards 57

Type Description
caddr_t core address (Section 14.9)
clock_t counter of clock ticks (process time) (Section 1.10)
comp_t compressed clock ticks (Section 8.14)
dev_t device numbers (major and minor) (Section 4.23)
fd_set file descriptor sets (Section 14.5.1)
fpos_t file position (Section 5.10)
gid_t numeric group [Ds ‘
ino_t i-node numbers (Section 4.14)
mode_t file type, file creation mode (Section 4.5)
nlink_t link counts for directory entries (Section 4.14)
off t file sizes and offsets (signed) (1seek, Section 3.6)
pid_t process IDs and process group IDs (signed) (Sections 8.2and 9.4)
ptrdiff_t result of subtracting two pointers (signed)
rlim t resource limits (Section 7.11)
sig atomic_t | data type that can be accessed atomically (Section 10.15)
sigset_t signal set (Section 10.11)
size t sizes of objects (such as strings) (unsigned) (Section 3.7)
ssize_t functions that return a count of bytes (signed) (read, write, Section 3.7)
time_t counter of seconds of calendar time (Section 1.10)
uid_t numeric user IDs
wchar_t can represent all distinct character codes J

Figure 2.20 Some common primitive system data types

ISO C defines the function clock to return the amount of CPU time used by a
process. The value returned is a clock_t value. To convert this value to seconds, we
divide it by CLOCKS_PER_SEC, which is defined in the <time.h> header. POSIX.1
defines the function times that returns both the CPU time (for the caller and all its
terminated children) and the clock time. All these time values are clock_t values.
The sysconf function is used to obtain the number of clock ticks per second for use
with the return values from the times function. What we have is the same term, clock
ticks per second, defined differently by ISO C and POSIX.1. Both standards also use the
same data type (clock_t) to hold these different values. The difference can be seen in
Solaris, where clock returns microseconds (hence CLOCKS_PER_SEC is 1 million),
whereas sysyconf returns the value 100 for clock ticks per second.

Another area of potential conflict is when the ISO C standard specifies a function,
but doesn't specify it as strongly as POSIX.1 does. This is the case for functions that
require a different implementation in a POSIX environment (with multiple processes)
than in an ISO C environment (where very little can be assumed about the host
operating system). Nevertheless, many POSIX-compliant systems implement the ISO C
function, for compatibility. The signal function is an example. If we unknowingly
use the signal function provided by Solaris (hoping to write portable code that can be
run in ISO C environments and under older UNIX systems), it'll provide semantics
different from the POSIX.1 sigaction function. We'll have more to say about the
signal function in Chapter 10.

58 UNIX Standardization and Implementations Chapter 2

210 Summary

Much has happened over the past two decades with the standardization of the UNIX
programming environment. We’ve described the dominant standards—ISO C, POSIX,
and the Single UNIX Specification—and their effect on the four implementations that
we'll examine in this text: FreeBSD, Linux, Mac OS X, and Solaris. These standards try
to define certain parameters that can change with each implementation, but we’ve seen
that these limits are imperfect. We’ll encounter many of these limits and magic
constants as we proceed through the text.

The bibliography specifies how one can obtain copies of the standards that we've
discussed.

Exercises

2.1 We mentioned in Section 2.8 that some of the primitive system data types are defined in
more than one header. For example, on FreeBSD 5.2.1, size t is defined in 26 different
headers. Because all 26 headers could be included in a program and because 1SO C does
not allow multiple typedef£s for the same name, how must the headers be written?

2.2 Examine your system’s headers and list the actual data types used to implement the
primitive system data types.

2.3 Update the program in Figure 2.16 to avoid the needless processing that occurs when
sysconf returns LONG_MAX as the limit for OPEN_MaX.

3.1

3.2

File 1/0

Introduction

We'll start our discussion of the UNIX System by describing the functions available for
file I/O—open a file, read a file, write a file, and so on. Most fileI/Oon a UNIX system
can be performed using only five functions: open, read, write, lseek, and close.
We then examine the effect of various buffer sizes on the read and write functions.

The functions described in this chapter are often referred to as unbuffered /O, in
contrast to the standard I/O routines, which we describe in Chapter 5. The term
unbuffered means that each read or write invokes a system call in the kernel. These
unbuffered I/O functions are not part of ISO C, but are part of POSIX.1 and the Single
UNIX Specification.

Whenever we describe the sharing of resources among multiple processes, the
concept of an atomic operation becomes important. We examine this concept with
regard to file I/O and the arguments to the open function. This leads to a discussion of
how files are shared among multiple processes and the kernel data structures involved.
After describing these features, we describe the dup, fcntl, sync, £sync, and ioctl
functions.

File Descriptors

To the kernel, all open files are referred to by file descriptors. A file descriptor is a
non-negative integer. When we open an existing file or create a new file, the kernel
returns a file descriptor to the process. When we want to read or write a file, we
identify the file with the file descriptor that was returned by open or creat as an
argument to either read or write.

59

60

File 1/0 Chapter 3

3.3

By convention, UNIX System shells associate file descriptor 0 with the standard
input of a process, file descriptor 1 with the standard output, and file descriptor 2 with
the standard error. This convention is used by the shells and many applications; it is
not a feature of the UNIX kernel. Nevertheless, many applications would break if these
associations weren’t followed.

The magic numbers 0, 1, and 2 should be replaced in POSIX-compliant applications
with the symbolic constants STDIN_FILENO, STDOUT FILENO, and STDERR FILENO.
These constants are defined in the <unistd.h> header.

File descriptors range from 0 through OPEN MAX. (Recall Figure 2.10.) Early
historical implementations of the UNIX System had an upper limit of 19, allowing a
maximum of 20 open files per process, but many systems increased this limit to 63.

With FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, the limit is essentially infinite, bounded by
the amount of memory on the system, the size of an integer, and any hard and soft limits
configured by the system administrator. Linux 2.4.22 places a hard limit of 1,048,576 on the
number of file descriptors per process.

open Function

A file is opened or created by calling the open function.

#include <fcntl.h>
int open(const char *pathname, int oflag, ... /* mode_t mode */) ;

Returns: file descriptor if OK, ~1 on error

We show the third argument as . . ., which is the ISO C way to specify that the number
and types of the remaining arguments may vary. For this function, the third argument
is used only when a new file is being created, as we describe later. We show this
argument as a comment in the prototype.

The pathname is the name of the file to open or create. This function has a multitude
of options, which are specified by the oflag argument. This argument is formed by
ORing together one or more of the following constants from the <fcnt1 . h> header:

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Most implementations define 0_RDONLY as 0, 0_WRONLY as 1, and O_RDWR as 2, for
compatibility with older programs.

One and only one of these three constants must be specified. The following constants
are optional:

©_APPEND Append to the end of file on each write. We describe this option in
detail in Section 3.11.

Section 3.3

open Function 61

O_CREAT

0_EXCL

0_TRUNC

O_NOCTTY

O_NONBLOCK

Create the file if it doesn’t exist. This option requires a third argument
to the open function, the mode, which specifies the access permission
bits of the new file. (When we describe a file’s access permission bits in
Section 4.5, we'll see how to specify the mode and how it can be
modified by the umask value of a process.)

Generate an error if O _CREAT is also specified and the file already
exists. This test for whether the file already exists and the creation of
the file if it doesn’t exist is an atomic operation. We describe atomic
operations in more detail in Section 3.11.

If the file exists and if it is successfully opened for either write-only or
read-write, truncate its length to 0.

If the pathname refers to a terminal device, do not allocate the device as
the controlling terminal for this process. We talk about controlling
terminals in Section 9.6.

If the pathname refers to a FIFO, a block special file, or a character
special file, this option sets the nonblocking mode for both the opening
of the file and subsequent I/O. We describe this mode in Section 14.2.

In earlier releases of System V, the O_NDELAY (no delay) flag was introduced. This
option is similar to the O_NONBLOCK (nonblocking) option, but an ambiguity was
introduced in the return value from a read operation. The no-delay option causes a
read to return 0 if there is no data to be read from a pipe, FIFO, or device, but this
conflicts with a return value of 0, indicating an end of file. SVR4-based systems still
support the no-delay option, with the old semantics, but new applications should
use the nonblocking option instead.

The following three flags are also optional. They are part of the synchronized input and
output option of the Single UNIX Specification (and thus POSIX.1):

0_DSYNC

O_RSYNC

0_SYNC

Have each write wait for physical I/O to complete, but don’t wait for
file attributes to be updated if they don’t affect the ability to read the
data just written.

Have each read operation on the file descriptor wait until any pending
writes for the same portion of the file are complete.

Have each write wait for physical I/O to complete, including 1/0
necessary to update file attributes modified as a result of the write.
We use this option in Section 3.14.

The 0_DSYNC and O_SYNC flags are similar, but subtly different. The O_DSYNC flag
affects a file’s attributes only when they need to be updated to reflect a change in the
file’s data (for example, update the file’s size to reflect more data). With the O_SYNC
flag, data and attributes are always updated synchronously. When overwriting an
existing part of a file opened with the O_DSYNC flag, the file times wouldn't be
updated synchronously. In contrast, if we had opened the file with the 0_SYNC flag,
every write to the file would update the file’s times before the write returns,
regardless of whether we were writing over existing bytes or appending to the file.

62

File I/0O Chapter 3

Solaris 9 supports all three flags. FreeBSD 5.2.1 and Mac OS X 10.3 have a separate
flag (O_FSYNC) that does the same thing as O_SYNC. Because the two flags are
equivalent, FreeBSD 5.2.1 defines them to have the same value (but curiously, Mac
OS X 10.3 doesn’t define 0_SYNC). FreeBSD 5.2.1 and Mac OS X 10.3 don't support
the O_DSYNC or O_RSYNC flags. Linux 2.4.22 treats both flags the same as O_SYNC.

The file descriptor returned by open is guaranteed to be the lowest-numbered
unused descriptor. This fact is used by some applications to open a new file on
standard input, standard output, or standard error. For example, an application might
close standard output—normally, file descriptor 1—and then open another file,
knowing that it will be opened on file descriptor 1. We'll see a better way to guarantee
that a file is open on a given descriptor in Section 3.12 with the dup2 function.

Filename and Pathname Truncation

3.4

What happens if NAME_MAX is 14 and we try to create a new file in the current directory
with a filename containing 15 characters? Traditionally, early releases of System V, such
as SVR2, allowed this to happen, silently truncating the filename beyond the 14th
character. BSD-derived systems returned an error status, with errno set to
ENAMETOOLONG. Silently truncating the filename presents a problem that affects more
than simply the creation of new files. If NAME_MAX is 14 and a file exists whose name is
exactly 14 characters, any function that accepts a pathname argument, such as open or
stat, has no way to determine what the original name of the file was, as the original
name might have been truncated.

With POSIX.1, the constant _POSIX NO TRUNC determines whether long filenames
and long pathnames are truncated or whether an error is returned. As we saw in
Chapter 2, this value can vary based on the type of the file system.

Whether or not an error is returned is largely historical. For example, SVR4-based systems do
not generate an error for the traditional System V file system, S5. For the BSD-style file system
(known as UFS), however, SVR4-based systems do generate an error.

As another example, see Figure 2.19. Solaris will return an error for UFS, but not for PCFS, the
DOS-compatible file system, as DOS silently truncates filenames that don’t fit in an 8.3 format.

BSD-derived systems and Linux always return an error.

If POSIX_NO_TRUNC is in effect, errno is set to ENAMETOOLONG, and an error
status is returned if the entire pathname exceeds PATH_MAX or any filename component
of the pathname exceeds NAME _MAX.

creat Function

A new file can also be created by calling the creat function.

#include <fcntl.h>

int creat (const char *pathname, mode t mode) ;

Returns: file descriptor opened for write-only if OK, -1 on error

Section 3.6 1seek Function 63

3.5

Note that this function is equivalent to

open (pathname, O _WRONLY | O_CREAT | O_TRUNC, mode) ;

Historically, in early versions of the UNIX System, the second argument to open could be only
0, 1, or 2. There was no way to open a file that didn’t already exist. Therefore, a separate
system call, creat, was needed to create new files. With the 0_CREAT and O_TRUNC options
now provided by open, a separate creat function is no longer needed.

We'll show how to specify mode in Section 4.5 when we describe a file’s access
permissions in detail.

One deficiency with creat is that the file is opened only for writing. Before the
new version of open was provided, if we were creating a temporary file that we wanted
to write and then read back, we had to call creat, close, and then open. A better
way is to use the open function, as in

open (pathname, O_RDWR | O_CREAT | O_TRUNC, mode);

close Function

An open file is closed by calling the close function.

#include <unistd.h>
int close(int filedes) ;

Returns: 0 if OK, =1 on error

Closing a file also releases any record locks that the process may have on the file. We'll
discuss this in Section 14.3.

When a process terminates, all of its open files are closed automatically by the
kernel. Many programs take advantage of this fact and don't explicitly close open files.
See the program in Figure 1.4, for example.

1seek Function

Every open file has an associated “current file offset,” normally a non-negative integer
that measures the number of bytes from the beginning of the file. (We describe some
exceptions to the “non-negative” qualifier later in this section.) Read and write
operations normally start at the current file offset and cause the offset to be incremented
by the number of bytes read or written. By default, this offset is initialized to 0 when a
file is opened, unless the O_APPEND option is specified.

An open file’s offset can be set explicitly by calling 1seek.

#include <unistd.h>

off_t lseek(int filedes, off_t offset, int whence);

Returns: new file offset if OK, —1 on error

64 File I/O Chapter 3

The interpretation of the offset depends on the value of the whence argument.

* If whence is SEEK_SET, the file’s offset is set to offset bytes from the beginning of
the file.

e If whence is SEEK_CUR, the file’s offset is set to its current value plus the offset.
The offset can be positive or negative.

* If whence is SEEK_END, the file’s offset is set to the size of the file plus the offset.
The offset can be positive or negative.

Because a successful call to 1seek returns the new file offset, we can seek zero bytes
from the current position to determine the current offset:

off t currpes;

currpos = lseek(fd, 0, SEEK CUR);
This technique can also be used to determine if a file is capable of seeking. If the file
descriptor refers to a pipe, FIFO, or socket, 1 seek sets errno to ESPIPE and returns —1.

The three symbolic constants—SEEK_SET, SEEK_CUR, and SEEK_END—were -introduced
with System V. Prior to this, whence was specified as 0 (absolute), 1 (relative to current offset),
or 2 (relative to end of file). Much software still exists with these numbers hard coded.

The character 1 in the name lseek means “long integer.” Before the introduction of the
off_t data type, the offset argument and the return value were long integers. lseek was
introduced with Version 7 when long integers were added to C. (Similar functionality was
provided in Version 6 by the functions seek and tell.)

Example

The program in Figure 3.1 tests its standard input to see whether it is capable of seeking.

#include "apue.h"
int
main (void)

{

if (lseek (STDIN_FILENO, 0, SEEK CUR) == -1)
printf ("cannot seek\n");

else
printf ("seek OK\n");

exit (0) ;

Figure 3.1 Test whether standard input is capable of seeking

If we invoke this program interactively, we get
$./a.out < /etc/motd
seek OK
$ cat < /etc/motd | ./a.out
cannot seek
$./a.out < /var/spool/cron/FIFO
cannot seek

Section 3.6 1seek Function 65

Normally, a file’s current offset must be a non-negative integer. It is possible,
however, that certain devices could allow negative offsets. But for regular files, the
offset must be non-negative. Because negative offsets are possible, we should be careful
to compare the return value from lseek as being equal to or not equal to —1 and not
test if it’s less than 0.

The /dev/kmem device on FreeBSD for the Intel x86 processor supports negative offsets.

Because the offset (off_t) is a signed data type (Figure 2.20), we lose a factor of 2 in the
mnmmmﬁkdm.Hoﬁ_tbaﬁbﬂmwgnmemnMNmﬁkﬁmbzﬂ4bw%.

1seek only records the current file offset within the kernel—it does not cause any
1/0 to take place. This offset is then used by the next read or write operation.

The file’s offset can be greater than the file’s current size, in which case the next
write to the file will extend the file. This is referred to as creating a hole in a file and is
allowed. Any bytes in a file that have not been written are read back as 0.

A hole in a file isn’t required to have storage backing it on disk. Depending on the
file system implementation, when you write after seeking past the end of the file, new
disk blocks might be allocated to store the data, but there is no need to allocate disk
blocks for the data between the old end of file and the location where you start writing.

Example

The program shown in Figure 3.2 creates a file with a hole in it.

#include "apue.h"
#include <fcntl.h>

char bufi[] = "abcdefghij";
char buf2({] = "ABCDEFGHIJ";
int
main(void)
{

int fd;

if ((fd = creat("file.hole", FILE_MODE)) < 0)
err_sys("creat error");

if (write(fd, bufl, 10) != 10)
err_sys("bufl write error");
/* offset now = 10 */

if (lseek(fd, 16384, SEEK_SET) == -1)
err_sys("lseek error");
/* offset now = 16384 */

if (write(fd, buf2, 10) != 10)
err_sys("buf2 write error");
/* offset now = 16394 */

exit (0);

Figure 3.2 Create a file with a hole in it

66

File 1/O Chapter 3

Running this program gives us

$./a.out

$ 1ls -1 file.hole check its size

-Yrw-r--r-- 1 sar 16394 Nov 25 01:01 file.hole
$ od -¢ file.hole let’s look at the actual contents

0000000 a b ¢ d e £ g h i 3 \o\o \o \o \o \o
0000020 \0O \0 \0 \0 \0o \0 \0 \0 \0 \0 \o0o \o \0 \0 \0 \o

*

0040000 A B C D E F G H I J
0040012

We use the 0d(1) command to look at the contents of the file. The -c flag tells it to print
the contents as characters. We can see that the unwritten bytes in the middle are read
back as zero. The seven-digit number at the beginning of each line is the byte offset in
octal.

To prove that there is really a hole in the file, let’s compare the file we’ve just created
with a file of the same size, but without holes:

$ 1s -1s file.hole file.nohole compare sizes
8 -rw~-r--r-- 1 sar 16394 Nov 25 01:01 file.hole
20 -rw-r--r-- 1 sar 16394 Nov 25 01:03 file.nohole

Although both files are the same size, the file without holes consumes 20 disk blocks,
whereas the file with holes consumes only 8 blocks.

In this example, we call the write function (Section 3.8). We'll have more to say
about files with holes in Section 4.12. O

Because the offset address that lseek uses is represented by an off t,
implementations are allowed to support whatever size is appropriate on their particular
platform. Most platforms today provide two sets of interfaces to manipulate file offsets:
one set that uses 32-bit file offsets and another set that uses 64-bit file offsets.

The Single UNIX Specification provides a way for applications to determine which
environments are supported through the sysconf function (Section 2.5.4). Figure 3.3
summarizes the sysconf constants that are defined.

Name-of option Description name argument
_POSIX V6_ILP32 OFF32 |int, long, pointer,and off_t types | SC_V6_ILP3 2_OFF32
are 32 bits.
_POSIX_V6_ILP32_OFFBIG|int, long, and pointer types are _SC_vVé_ILP32_OFFBIG
32 bits; of £_t types are at least
64 bits.

_POSIX_V6_LP64_OFF64 |int typesare 32bits; long, pointer, | SC_V6_LP64 OFF64
and of f_t types are 64 bits.
_POSIX V6_LP64_OFFBIG |int typesare 32bits; long, pointer, | SC_V6_LP64_OFFBIG
and off_t types are at least
64 bits.

Figure 3.3 Data size options and name arguments to sysconf

Section 3.7

read Function 67

3.7

The c99 compiler requires that we use the getconf(l) command to map the
desired data size model to the flags necessary to compile and link our programs.
Different flags and libraries might be needed, depending on the environments
supported by each platform.

Unfortunately, this is one area in which implementations haven’t caught up to the standards.
Confusing things further is the name changes that were made between Version 2 and Version 3
of the Single UNIX Specification.

To get around this, applications can set the _FILE_OFFSET_BITS constant to 64 to enable
64-bit offsets. Doing so changes the definition of of £_t to be a 64-bit signed integer. Setting
_FILE_OFFSET BITS to 32 enables 32-bit file offsets. Be aware, however, that although all
four platforms discussed in this text support both 32-bit and 64-bit file offsets by setting the
_FILE_OFFSET_BITS constant to the desired value, this is not guaranteed to be portable.

Note that even though you might enable 64-bit file offsets, your ability to create a
file larger than 2 TB (2°'-1 bytes) depends on the underlying file system type.

read Function

Data is read from an open file with the read function.

#include <unistd.h>

ssize_t read(int filedes, void *buf, size_ t nbytes);

Returns: number of bytes read, 0 if end of file, -1 on error

If the read is successful, the number of bytes read is returned. If the end of file is
encountered, 0 is returned.

There are several cases in which the number of bytes actually read is less than the
amount requested:

When reading from a regular file, if the end of file is reached before the
requested number of bytes has been read. For example, if 30 bytes remain until
the end of file and we try to read 100 bytes, read returns 30. The next time we
call reag, it will return 0 (end of file).

When reading from a terminal device. Normally, up to one line is read at a time.
(We'll see how to change this in Chapter 18.)

When reading from a network. Buffering within the network may cause less
than the requested amount to be returned.

When reading from a pipe or FIFO. If the pipe contains fewer bytes than
requested, read will return only what is available.

When reading from a record-oriented device. Some record-oriented devices,
such as magnetic tape, can return up to a single record at a time.

When interrupted by a signal and a partial amount of data has already been
read. We discuss this further in Section 10.5.

68

File 1/G Chapter 3

3.8

3.9

The read operation starts at the file’s current offset. Before a successful return, the
offset is incremented by the number of bytes actually read.

POSIX.1 changed the prototype for this function in several ways. The classic
definition is

int read(int filedes, char *buf, unsigned nbytes) ;

* First, the second argument was changed from a char * to a void * to be
consistent with ISO C: the type void * is used for generic pointers.

* Next, the return value must be a signed integer (ssize_t) to return a positive
byte count, 0 (for end of file), or ~1 (for an error).

* Finally, the third argument historically has been an unsigned integer, to allow a
16-bit implementation to read or write up to 65,534 bytes at a time. With the
1990 POSIX.1 standard, the primitive system data type ssize_t was introduced
to provide the signed return value, and the unsigned size_t was used for the
third argument. (Recall the SSIZE_MAX constant from Section 2.5.2.)

write Function

Data is written to an open file with the write function.

#include <unistd.h>
ssize_t write(int filedes, const void *buf, size_t nbytes) ;

Returns: number of bytes written if OK, -1 on error

The return value is usually equal to the nbytes argument; otherwise, an error has
occurred. A common cause for a write error is either filling up a disk or exceeding the
file size limit for a given process (Section 7.11 and Exercise 10.11).

For a regular file, the write starts at the file’s current offset. If the O_APPEND option
was specified when the file was opened, the file’s offset is set to the current end of file
before each write operation. After a successful write, the file’s offset is incremented by
the number of bytes actually written.

/O Efficiency

The program in Figure 3.4 copies a file, using only the read and write functions. The
following caveats apply to this program.

* It reads from standard input and writes to standard output, assuming that these
have been set up by the shell before this program is executed. Indeed, all
normal UNIX system shells provide a way to open a file for reading on standard
input and to create (or rewrite) a file on standard output. This prevents the
program from having to open the input and output files.

Section 3.9 I/0O Efficiency 69

#include "apue.h"
#define BUFFSIZE 4096

int
main (void)

{
int n;
char buf [BUFFSIZE] ;

while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
if (write (STDOUT_FILENO, buf, n) != n)
err sys("write error");

if (n < 0)
err sys("read error");

exit (0);

Figure 3.4 Copy standard input to standard output

e Many applications assume that standard input is file descriptor 0 and that
standard output is file descriptor 1. In this example, we use the two defined
names, STDIN FILENO and STDOUT_FILENO, from <unistd.h>.

e The program doesn’t close the input file or output file. Instead, the program
uses the feature of the UNIX kernel that closes all open file descriptors in a
process when that process terminates.

e This example works for both text files and binary files, since there is no
difference between the two to the UNIX kernel.

One question we haven’t answered, however, is how we chose the BUFFSIZE
value. Before answering that, let's run the program using different values for
BUFFSIZE. Figure 3.5 shows the results for reading a 103,316,352-byte file, using 20
different buffer sizes.

The file was read using the program shown in Figure 3.4, with standard output
redirected to /dev/null. The file system used for this test was the Linux ext2 file
system with 4,096-byte blocks. (The st_blksize value, which we describe in
Section 4.12, is 4,096.) This accounts for the minimum in the system time occurring at a
BUFFSIZE of 4,096. Increasing the buffer size beyond this has little positive effect.

Most file systems support some kind of read-ahead to improve performance. When
sequential reads are detected, the system tries to read in more data than an application
requests, assuming that the application will read it shortly. From the last few entries in
Figure 3.5, it appears that read-ahead in ext 2 stops having an effect after 128 KB.

We'll return to this timing example later in the text. In Section 3.14, we show the
effect of synchronous writes; in Section 5.8, we compare these unbuffered 1/O times
with the standard 1/0O library.

72 File I/O Chapter 3
process table entry file table v-node table
[file status flags v-node
y information
current file offset -
i-node
fd file v-node pointer — information
flags pointer s T
d 0: current file size
fd 1: —— .
fd 2:

file status flags
v-node
current file offset J node
v-node pointer — i-node

information

If

current file size

Figure 3.6 Kernel data structures for open files

added. The first release from Berkeley to provide v-nodes was the 4.3BSD Reno release, when
NFS was added.

In SVR4, the v-node replaced the file system-independent i-node of SVR3. Solaris is derived
from SVR4 and thus uses v-nodes.

Instead of splitting the data structures into a v-node and an i-node, Linux uses a file
system-independent i-node and a file system-dependent i-node.

two independent processes have the same file open, we could have the

arrangement shown in Figure 3.7. We assume here that the first process has the file
open on descriptor 3 and that the second process has that same file open on descriptor
4. Each process that opens the file gets its own file table entry, but only a single v-node
table entry is required for a given file. One reason each process gets its own file table
entry is so that each process has its own current offset for the file.

Given these data structures, we now need to be more specific about what happens
with certain operations that we’ve already described.

After each write is complete, the current file offset in the file table entry is
incremented by the number of bytes written. If this causes the current file offset
to exceed the current file size, the current file size in the i-node table entry is set
to the current file offset (for example, the file is extended).

If a file is opened with the O_APPEND flag, a corresponding flag is set in the file
status flags of the file table entry. Each time a write is performed for a file with
this append flag set, the current file offset in the file table entry is first set to the
current file size from the i-node table entry. This forces every write to be
appended to the current end of file.

If a file is positioned to its current end of file using 1seek, all that happens is the
current file offset in the file table entry is set to the current file size from the
i-node table entry. (Note that this is not the same as if the file was opened with
the O_APPEND flag, as we will see in Section 3.11.)

Section 3.10 File Sharing 73

process table entry

f il
ﬂa%s pofllneter

fd 0:
(a1 file table
g g / file status flags
current file offset v-node table
v-node pointer " v-node
information
i-node
information
current file size

file status flags

process table entry current file offset

v-node pointer —

ﬂgdgs pofl%eter

fd 0:
fd 1:
fd 2:
fd 3:
fd 4:

Figure 3.7 Two independent processes with the same file open

e The lseek function modifies only the current file offset in the file table entry.
No 1/0 takes place.

It is possible for more than one file descriptor entry to point to the same file table
entry, as we'll see when we discuss the dup function in Section 3.12. This also happens
after a fork when the parent and the child share the same file table entry for each open
descriptor (Section 8.3).

Note the difference in scope between the file descriptor flags and the file status
flags. The former apply only to a single descriptor in a single process, whereas the latter
apply to all descriptors in any process that point to the given file table entry. When we
describe the fent1 function in Section 3.14, we'll see how to fetch and modify both the
file descriptor flags and the file status flags.

Everything that we’ve described so far in this section works fine for multiple
processes that are reading the same file. Each process has its own file table entry with
its own current file offset. Unexpected results can arise, however, when multiple
processes write to the same file. To see how to avoid some surprises, we need to
understand the concept of atomic operations.

74 File 1/0 Chapter 3

3.11 Atomic Operations

Appending to a File

Consider a single process that wants to append to the end of a file. Older versions of
the UNIX System didn’t support the O_APPEND option to open, so the program was
coded as follows:

if (lseek(fd, 0L, 2) < 0) /* position to EOF */
err sys("lseek error");
if (write(fd, buf, 100) != 100) /* and write */

err_sys("write erroxr");

This works fine for a single process, but problems arise if multiple processes use this
technique to append to the same file. (This scenario can arise if multiple instances of the
same program are appending messages to a log file, for example.)

Assume that two independent processes, A and B, are appending to the same file.
Each has opened the file but without the O_APPEND flag. This gives us the same picture
as Figure 3.7. Each process has its own file table entry, but they share a single v-node
table entry. Assume that process A does the 1seek and that this sets the current offset
for the file for process A to byte offset 1,500 (the current end of file). Then the kernel
switches processes, and B continues running. Process B then does the 1seek, which
sets the current offset for the file for process B to byte offset 1,500 also (the current end
of file). Then B calls write, which increments B’s current file offset for the file to 1,600.
Because the file’s size has been extended, the kernel also updates the current file size in
the v-node to 1,600. Then the kernel switches processes and A resumes. When A calls
write, the data is written starting at the current file offset for A, which is byte offset
1,500. This overwrites the data that B wrote to the file.

The problem here is that our logical operation of “position to the end of file and
write” requires two separate function calls (as we’ve shown it). The solution is to have
the positioning to the current end of file and the write be an atomic operation with
regard to other processes. Any operation that requires more than one function call
cannot be atomic, as there is always the possibility that the kernel can temporarily
suspend the process between the two function calls (as we assumed previously).

The UNIX System provides an atomic way to do this operation if we set the
O_APPEND flag when a file is opened. As we described in the previous section, this
causes the kernel to position the file to its current end of file before each write. We no
longer have to call 1seek before each write.

pread and pwrite Functions

The Single UNIX Specification includes XSI extensions that allow applications to seek
and perform I/0O atomically. These extensions are pread and pwrite.

Section 3.11 Atomic Operations 75

#include <unistd.h>
ssize_ t pread(int filedes, void *buf, size_t nbytes, off t offset) ;

Returns: number of bytes read, 0 if end of file, -1 on error

ssize t pwrite(int filedes, const void *buf, size_t nbytes, off_t offset);

Returns: number of bytes written if OK, -1 on error

Calling pread is equivalent to calling 1seek followed by a call to read, with the
following exceptions.

¢ There is no way to interrupt the two operations using pread.

* The file pointer is not updated.

Calling pwrite is equivalent to calling 1seek followed by a call to write, with similar
exceptions.

Creating a File

We saw another example of an atomic operation when we described the O_CREAT and
O_EXCL options for the open function. When both of these options are specified, the
open will fail if the file already exists. We also said that the check for the existence of
the file and the creation of the file was performed as an atomic operation. If we didn’t
have this atomic operation, we might try

if ((fd = open(pathname, O_WRONLY)) < 0) {
if (errno == ENOENT) {
if ((fd = creat (pathname, mode)) < 0)
err_sys("creat error");
} else {
err_sys ("open error");
}

}

The problem occurs if the file is created by another process between the open and the
creat. If the file is created by another process between these two function calls, and if
that other process writes something to the file, that data is erased when this creat is
executed. Combining the test for existence and the creation into a single atomic
operation avoids this problem.

In general, the term atomic operation refers to an operation that might be composed
of multiple steps. If the operation is performed atomically, either all the steps are
performed, or none are performed. It must not be possible for a subset of the steps to be
performed. We'll return to the topic of atomic operations when we describe the 1ink
function (Section 4.15) and record locking (Section 14.3).

78

File I/0O Chapter 3

3.14

The function £sync refers only to a single file, specified by the file descriptor filedes,
and waits for the disk writes to complete before returning. The intended use of fsync
is for an application, such as a database, that needs to be sure that the modified blocks
have been written to the disk.

The fdatasync function is similar to £sync, but it affects only the data portions of
a file. With f£synoc, the file’s attributes are also updated synchronously.

All four of the platforms described in this book support sync and fsync. However, FreeBSD
5.2.1 and Mac OS X 10.3 do not support fdatasync.

fcntl Function

The fentl function can change the properties of a file that is already open.

#include <fentl.hs>

int fentl(int filedes, int cmd, ... /* int arg */ };

Returns: depends on cmd if OK (see following), —1 on error

In the examples in this section, the third argument is always an integer, corresponding
to the comment in the function prototype just shown. But when we describe record
locking in Section 14.3, the third argument becomes a pointer to a structure.
The fentl function is used for five different purposes.
Duplicate an existing descriptor (cmd = F_DUPFD)
Get/set file descriptor flags (cmd = F_GETFD or F_SETFD)
Get/set file status flags (cmd = F_GETFL or F_SETFL)
Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN)
5. Get/set record locks (cd = F_GETLK, F_SETLK, or F_SETLKW)

= Lo

We'll now describe the first seven of these ten cmd values. (We’'ll wait until Section 14.3
to describe the last three, which deal with record locking.) Refer to Figure 3.6, since
we'll be referring to both the file descriptor flags associated with each file descriptor in
the process table entry and the file status flags associated with each file table entry.

F_DUPFD Duplicate the file descriptor filedes. The new file descriptor is returned as
the value of the function. It is the lowest-numbered descriptor that is not
already open, that is greater than or equal to the third argument (taken as
an integer). The new descriptor shares the same file table entry as filedes.
(Refer to Figure 3.8.) But the new descriptor has its own set of file
descriptor flags, and its FD_CLOEXEC file descriptor flag is cleared. (This
means that the descriptor is left open across an exec, which we discuss in
Chapter 8.)

F_GETFD Return the file descriptor flags for filedes as the value of the function.
Currently, only one file descriptor flag is defined: the FD_CLOEXEC flag.

